

ىدىد	لغات و اصلاحات ج
1. Prime number	عدد اول
2. Counting number	عدد شمارشی
3. Odd	فرد
4. Negative	منفى
5. Continuos functions	تابعهای پیوسته
6. Interval	بازه
7. Differentiable functions	تابعهای مشتق پذیر
8. Consider	در نظر گرفتن
9. Claim	ادعا

EXAMPLE 1. Let $A=\{all odd counting numbers larger than 2\}$ and $B=\{all prime numbers larger than 2\}$. Are these two sets equal?

Proof. The answer is: no.

We have already seen that all prime numbers larger than 2 are odd. Therefore $B \subseteq A$.

Are all odd numbers larger than 2 prime numbers? The answer is negative, because the number 9 is odd, but it is not prime. Therefore, $A \not\subseteq B$. Thus, the two sets are not equal.

EXAMPLE 2. Let $C = \{$ all continuous functions on the interval [-1,1] $\}$ and $D = \{$ all differentiable functions on the interval [-1,1] $\}$. Are these two sets equal?

Proof. The answer is: no.

All differentiable functions are continuous (a Calculus book might be helpful for checking this claim), but not all continuous functions are differentiable.

Consider the function f(x) = |x|. This is continuous, but it is not differentiable at x=0.

شما ترجمه كنيد

EXAMPLE 1. Let $A \subset U$ and $B \subset U$. Then

 $(A \cap B)' = A' \cup B'.$

(This is known as one of De Morgan's laws. The proof of the other law, namely $(A \cup B)' = A' \cap B'$, is left as an exercise. August De Morgan [1806-1871] was one of the first mathematicians to use letters and symbols in abstract mathematics).

Proof

Part 1. $(A \cap B) \subseteq A \cup B'$

Let $x \in (A \cap B)'$. This implies that $x \notin (A \cap B)$. Therefore, either $x \notin A$ or $x \notin B$. Indeed, if *x* was an element of both *A* and *B*, Then it would be an element of their intersection. But we cannot exclude that *x* belongs to one of the two sets. Therefore, either $x \in A'$ or $x \in B'$. This implies that $x \in A \cup B'$.

Part 2. $A' \cup B' \subseteq (A \cap B)'$

Let $x \in A \cup B'$. Then either $x \in A'$ or $x \in B'$. Then either $x \notin A$ or $x \notin B$. This implies that *x* is not a common element of *A* and *B*; that is, $x \notin (A \cap B)$. Thus, we can conclude that $x \in (A \cap B)'$.

As both inclusions are true, the two sets are equal.

مثال۱. فرض كنيم:

A={۲ (گتر از ۲] و [همهٔ اعداد اول بزرگتر از ۲} آیا این دو مجموعه مساویاند؟

برهان: پاسخ خیر است. ما قبلاً دیدمایم که همهٔ اعداد اول بزرگتر از ۲ فرد هستند. بنابراین: A_B_I. آیا همهٔ اعداد فرد بزرگتر از ۲، اول هستند؟ پاسخ منفی است، زیرا عدد ۹ فرد است ولی اول نیست. بنابراین: A∠B. پس دو مجموعه برابر نیستند.

مثال ۲. فرض كنيم:

برهان: پاسخ خیر است. تمام تابعهای مشتق پذیر، پیوسته هستند (کتاب حسابان ممکن است برای بررسی این ادعا مفید باشد)، اما همهٔ توابع پیوسته مشتق پذیر نیستند. تابع اxا=(r) را در نظر بگیرید. این (تابع) پیوسته است، ولی در نقطهٔ ۰=x مشتق پذیر نیست.