1. Prime number
2. Counting number
3. Odd
4. Negative
5. Continuos functions
6. Interval
7. Differentiable functions
8. Consider
9. Claim

EXAMPLE 1. Let $A=\{$ all odd counting numbers larger than 2$\}$ and $B=\{$ all prime numbers larger than 2$\}$. Are these two sets equal?

Proof. The answer is: no.
We have already seen that all prime numbers larger than 2 are odd. Therefore $B \subseteq A$.

Are all odd numbers larger than 2 prime numbers? The answer is negative, because the number 9 is odd, but it is not prime. Therefore, $A \nsubseteq B$. Thus, the two sets are not equal.

EXAMPLE 2. Let $C=\{$ all continuous functions on the interval $[-1,1]\}$ and $D=\{$ all differentiable functions on the interval $[-1,1]\}$. Are these two sets equal?

Proof. The answer is: no.
All differentiable functions are continuous (a Calculus book might be helpful for checking this claim), but not all continuous functions are differentiable.

Consider the function $f(x)=|x|$. This is continuous, but it is not differentiable at $x=0$.

شما ترجمه كنيد

EXAMPLE 1. Let $A \subset U$ and $B \subset U$. Then
$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.
(This is known as one of De Morgan's laws. The proof of the other law, namely $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$, is left as an exercise. August De Morgan [1806-1871] was one of the first mathematicians to use letters and symbols in abstract mathematics).

Proof

Part 1. $(A \cap B)^{\prime} \subseteq A^{\prime} \cup B^{\prime}$
Let $x \in(A \cap B)^{\prime}$. This implies that $x \notin(A \cap B)$. Therefore, either $x \notin A$ or $x \notin B$. Indeed, if x was an element of both A and B, Then it would be an element of their intersection. But we cannot exclude that x belongs to one of the two sets. Therefore, either $x \in A^{\prime}$ or $x \in B^{\prime}$. This implies that $x \in A \cup B^{\prime}$.

Part 2. $A^{\prime} \cup B^{\prime} \subseteq(A \cap B)^{\prime}$
Let $x \in A^{\prime} \cup B^{\prime}$. Then either $x \in A^{\prime}$ or $x \in B^{\prime}$. Then either $x \notin A$ or $x \notin B$. This implies that x is not a common element of A and B; that is, $x \notin(A \cap B)$. Thus, we can conclude that $x \in(A \cap B)^{\prime}$.

As both inclusions are true, the two sets are equal.

برهان: پاســخ خير اســت. ما قبلاً ديدهايم كه
همهٔ اعداد اول بزر گَتر از 「 فرد هستند. بنابراين:

$$
\text { هســتند؟ پاســخ منفى اســت، زيرا عدد } 9 \text { فرد }
$$

$$
\text { اســت ولى اول نيست. بنابراين: A } \ddagger \text { B. يس دو }
$$

مجموعه برابر نيستند. ■
مثال r. فرض كنيم:

$$
\text { C=\{[-1, ا]همهٔ توابع پيوسته روى بازء }\}
$$

$$
\text { D=\{[-1, l]همهٔ توابع مشتق پذير روى بازء }\}
$$

آيا اين دو مجموعه مساوىاند؟

$$
\begin{aligned}
& \text { مثال ا. فرض كنيم: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { g }
\end{aligned}
$$

$$
\begin{aligned}
& \text { آيا اين دو مجموعه مساوىاند؟ }
\end{aligned}
$$

